Бесплатная доставка. 
 Бесплатная сборка. 
Ассортимент тканей

График работы:
Ежедневно. С 8-00 до 20-00.
Почта: soft_hous@mail.ru
Читальный зал -->  Машины цикла стирлинга 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [ 24 ] 25

Goranson, R. В. (1968). Development of a simplified Stirling engine to power circulatory-assist devices. Proceedings bf the 3rd Intersociety Energy Conversion Conference, Boulder, Colorado, U.S.A. (Aug.).

Grashof, F. (1890). Theorie der kraftmaschinen. Hamburg.

Halinetnann, H. (1948). Approximate calculation of thermal ratios in heat-exchangers including heat conduction in the direction of flow. National Gas Turbine Establishment Memorandum 36.

Haltey, J. A. (1958). The Robinson-type air engine. J. Stephenson Engng Soc. Kings Coll. Newcastle. 2, No. 2, p. 49.

Harmison, L. Т., Martini, W. R., Rudnlck, M. I. and Huffman, F. N. (1972). Experience with implanted radioisotope-fuelled artificial hearts. EN/IB 10, Proceedings of Second International Symposium on Power from Radioisotopes, O.E.C.D., Madrid (June).

Harper, D. B. and Rohsenow, W. M. (1953). Effect of rotary regenerator pefrprmance on gas-turbine-plant performance. Trans. Am. Soc. mech. Engrs. 75, 759-65.

Hausen, H. (1929). Uber die theorie des warmeaustausches in regeneratoren. Z. angew Math. Mech. 9 (June), 173-200. (On the theory of heat exchange in regenerators. R. A. E. Library Translation, No. 126).

Hausen, H. (1931). Naherungsverfahren zur berechnung des warmeaustausches in regeneratoren. Z. Angew Math. Mech. 11 (April), 105-14. (An approximate method of dimensioning regenerative heat-exchangers. R.A.E. Library Translation, No. 98).

Hausen, H. (1942). Vervollstandigte berechnung des warmeaustauches in regeneratoren. Z. ver. dt. ing. beiheft Verfahrenstechnik. No. 2, p. 31. (M.A.P. Reports and Translations, No. 312 (1946).)

Havemann, H. A. and Narayan Rao, N. N. (1955). Studies for new hot-, air engine. J. Indian Inst. Sci. B37, p. 224, and 38, p. 172.

Havemann, H. A. and Narayan Rao, N. (1954). Heat transfer in pulsating flow. Nature. 174, No. 4418, p. 41.

Heffner, F. E. (1965). Highlights from 6500 hours of Stirling-cycle operation. S.A.E. Paper No. 949D, Int. Auto Engr. Congress, Detroit, U.S.A.

Henderson, R. E. and Dresser, D. L. (I960). Solar concentration associated with the Stirling engine. A.R.S. Space power-systems Conference (Sept.).

Herschel, J. (1850). Making ice. The Athenaeum (Jan. 5), p. 22.

Hogan, W. H. and Stuart, R. W. (1963). Design considerations for cry genie refrigerators. A.S.M.E. Paper No. 63-WA-292.

Hougen, J. O. and Piret, E. L. (1951). Effective thermal conductivity of granular solids through which gases are flowing. Chem. Engng Prog. 47, 295- 303.

Howard, C. P. (1963). Heat-transfer and flow-friction characteristics of skewedpassage and glass-ceramic heat-transfer surfaces. A.S.M.E. Paper No, 63-WA-I15.

Howard, C. P. (1964). The single-blow problem including the effects of longitudinal conduction. A.S.M.E. Paper No. 64-СТР-П.

Hurley, E. G. (1954). Tests on a twin piston Stirling-cycle engine, using internal combustion. Shell Thornton Report K. 121.

Iliffe, C. E. (1948). Thermal analysis of the contra-flow regenerative heat-exchanger. Proc. Instn mech. Engrs. 159, 363-72.

Jakob, M. (1957). Heat transfer. Vol. II. John Wiley and Sons, New York.

Johnson, J. E. (1952). Regenerator heat-exchangers for gas turbines. Aero Research Council Technical Report, R & M. No. 2630.

Jones, L. L. Jnr. and Fax, D. H. (1954). Perturbation solutions for the periodic-flow thermal regenerator. A.S.M.E. Paper No. 54-A-130.

Joule, J. (1852). On the air engine. Phil. Trans. R. Soc. 142.

Karavansky, I. i. and Meltser, L. Z. (1958). Thermodynamic investigations of the working cycle of the Philips machine. Proc. 10th Int. Cong. Refrigeration. 3-29, 209.

Kays, W. M. and London, A. L. (1958). Compact heat-exchangers. McGraw-Hill, New York.

Kirk, A. (1874). On the mechanical production of cold. Proc. Inst. mech. Engrs. 37, 244-315.

Kirkley, D. W. (1959). Continued work on the hot-air engine. Durham University, B. Sc. Hons. Thesis.

Kirkley, D. W. (1962a). An investigation of the losses occurring in reciprocating hot-air engines. Durham University, Ph. D. Thesis.

Kirkley, D. W. (1962b). Determination of the optimum configuratiom for a Stirling engine. J. Mech. Engng Sci. 4, No. 3, 204-12.

Kirkley, D. W. (1965). A thermodynamic analysis of the Stirling cycle and a comparison with experiment. S.A.E;. Paper 949B, Int. Auto Engng Congress, Detroit, U.S.A.

Kohler, J. W. L. and Jonkers, C. 0. (1955a). Fundamentals of the gas refrigerating machine. Philips Tech. Rev. 16, 69-78.

Kohler J. W. L. and Jonkers, C. 0, (1955b). Construction of a gas refrigerating machine. Philips Tech. Rev. 16, 105-15.

Kohler, J. W. L. (1960). Prog, in cryogen. 2, 41-67.

Kohler, J. W. L. (1965). The Stirling refrigeration cycle. Scien. Am. 212, No. 4. 119-27.

Kolin, I. (1968). The Stirling cycle with nuclear fuel. Nucl. Eng. (Dec.), 1027-34. van der Laan, G. M. J. and Roozendaal, K. (1961). A snow separator for liquidair installations. Philips Tech. Rev. 23, No. 2, 48-54.

Lambertson, T. J. (1958). Performance factors of a periodic-flow heat-exchanger. Trans. Am. Soc. mech. Engrs. 80, 586-92.

Lienesch, J. H. and Wade, W. R. (1969). Stirling engine operating quietly with almost no smoke and odour, and with little exhaust emission. S.A.E. Journal. 40-44.

Locke, G. L. (1950). Heat-transfer and flow-friction characteristics of porous solids. T.R. No. 10, Dept. of mech. Eng. Stanford University, U.S.A.

Lucek, R., Damsz., G. and Daniels, A. (1967). Adaptation of rolling-type seal diaphragms to miniature Stirling-cycle refrigerators. Air Force Flight Development Laboratory, TR-67-96 (July).

iWagee, P. R. and Datring, R. (1969). Vuilleumier-cycle cryogenic refrigerator development. Technical Report, TR 68-69 U.S. Air Force Flight Dynamics Lab.

iHalone, J. F. J. (1931). A new prime mover. JI. R. Soc. Arts, Vol. LXXIX. No. 4099, 680.

iWartinelli, R. C, Boelter, L. M. K., Winberge, F. B. and Yakahi, S. (1943). Heat transfer to a fluid flowing periodically at low frequencies in a vertical tube. Trans Am. Soc. mech. Engrs. 65, 789-98.

Martini, W. R. (1968). A Stirling-engine module to power circulatory-assist devices. A.S.M.E. Paper No. 68-WA-Ener. 2.

Martini, W. R., Jdinson, R. P., and Noble, J. E. (1969). Mechanical engineering problems in energetics - Stirling engines. A.S.M.E. Paper No. 69-WA-Ener 15.

McMahon, H. D. and Gifford, W. E. (1960). A new low-temperature gas expansion cycle, Parts I and II. Advances in cryogenic engineering, Vol. 5. Plenum Press, New York, pp. 354-72.

Meek, R. M. G. (1961). The measurement of heat-transfer coefficients in packed beds by the cyclic method. Int. Heat-Trans. Conf. (A.S.M.E.), Boulder, Colorado, U.S.A., pp. 770-80.

Meijer, R. J. (1959). The Philips hot-gas engine with rhombic drive mechanism. Philips Tech. Rev. 20, No. 9, 245-76.

. Meijer, R. J. (1960). The Philips Stirling thermal engine. Ph. D. Thesis, Technical University, Delft. (Also published as Philips Research Reports, Supplements, No. I (1961).)

Meijer, R. J. (1965). Philips Stirling engine activities. S. A. E. Paper No. 949E (Annual winter meeting, Detroit, U.S.A.).

Meijer, R. J. (1969a). The Philips Stirling engine. Ingenieur. 81, W69- W79, W81-W93.

Meijer, R. J. (1969b). Rebirth of the Stirling engine. Sci. J. A5, No. 2, 31-9.

Meijer, R. J. (ip70). Prospects of the Stirling engine for vehicular propulsion. Philips Tech. Rev. 31, No. 5/6, 169.

Mondt, J. R. (1964). Vehicular gas-turbine periodic-flow heat-exchanger solid and fluid temperature distributions. J. Engng Pr. A86, 121-6.

Murray, J. A., Martin, B. W., Bayley, F. J. and Rapley, C. W. (1961). Performance of thermal regenerators under sinusoidal flow conditions. Int. Heat-Trans. Conf., A.S.M.E., Boulder, Colorado and London, England, pp. 781-96.

Narayan Rao, N. N. (1954). Problems relating to the development of internal combustion engine industry in India, in A new hot-air engine. CS. I.R. (New Delhi) Report, pp. 49-56.

Neelen, G. T. M., Ortegren, L. G. H., Kuhlmann, P. and Zacharias, P. (1971). Stirling engines in traction applications. C.I.M.A.C., A26, 9th Int. Congress on combustion engines, Stockholm, Sweden.

Nusselt, W. (1927). Die theorie des winderhizers. Z. Ver. dt. Ing. 71, 85.

Nusselt, W. (1928). Der beharrungszustand im winderhitzer. Z. Ver. Dt. Ing. 72, 1052.

Otten, E. H. (1956). Tests on a displacer-type Stirling engine using internal combustion. Shell Thornton Report K. 140.

Parker, M. D. and Smith, C. L. (1960). Stirling engine development for space power. A.R.S. Space power-systems Conf. (Sept.).

Paste, E. A. and Whitaker, R. 0. (1961). Investigation of a 3-kW Stirling-cycle solar power system. WADD-TR-61-122 (in 10 vols). Part I, Engine design. Part X, Experimental evaluation.

Pitcher, G. K. and du Pre, F. K. (1970). Miniature Vuilleumier-cycle refrigerator. Proc. Cryogenic Engineering Conference, Boulder, Colorado, U.S.A.

Prast, G. (1963). A Philips gas refrigerating machine for 20K. Cryogenics. (September) 156-60.

Ovale, E. Б. and Smith, J. L. Jnr. (1968). A mathematical model for steady operation of Stirling-type engines. J. Engng Pwr. A, No. 1, 45-50.

Ovale, E. B. and Smith, J. L. Jnr. (1969). An approximate solution for the thermal performance of a Stirling engine regenerator. J. Engng Pwr. A, No. 2, 109-12.

Rankine, M. (1854). On the means of realizing the advantages of air engines. Proc. Br. Ass.

Rapley, C. (1960). Heat transfer in thermal regenerators. M. Sc. Thesis, Durham University.

Rietdijk, J. A., Van Beukering, H. C. J., van der Aa, H. H. M. and Meijer, R. J. (1965). A positive rod or piston seal for large pressure diflerences. Philips Tech. Rev. 26, 287-96.

Rios, P. A. and Smith, J. L. Jnr. (1969). An Analytical and experimental Evaluation of the pressure-drop losses in the Stirling cycle. A.S.M.E. Paper No. 69-W 69-WA/Ener. 8.

Romie, F. E. and Ambrosio, A. (1966). Heat transfer to fluids flowing with velocity pulsations in a pipe. Heat transfer, thermodynamics and education. McGraw-Hill, New York. pp. 273-94.

Saunders, 0. and Ford, H. (1940). Heat transfer in the flow of gas through a bed of solid particles. J. Iron Steel Inst. No. 1, p. 291.

Saunders, O. A. and Smoleniec, S. (1948). Heat regenerators. Proc. 7th Int. Congress Appl. Mech. Vol. 3, pp. 91 - 105.

Schalkwijk, W. E. (1959). A simp ified regenerator theory. J. Engng Pwr. A81, 142-50.

Schmidt, G. (1861). Theorie der geschlossenen calorischen maschine von Laubroy und Schwartzkopff in Berlin. Z. Ver. Oster. Ing. p. 79. (1871). Theorie der Lehmann schen calorischen maschine. Z. Ver. dt. Ing. 15, No. 1.

Schultz B. H. (1951). Regenerators with longitudinal heat conduption. General discussion on heat transfer (I. Mech. E. and A.S.M.E.).

Schultz. B. H. (1953). Approximate formulae in the theory of thermal regenerators. Appl. sclent. Res. A. 3, 165-73.

Schumann T. E. W. and Voss, V. (1934). Heat flow through granulated material. Fuel. 13, 249-56.

Schumann T. E. W. (1929). Heat transfer to a liquid flowing through a porous prism J. Franklin Inst. 208, 405-16.

Shuttleworth, P. (1958). An experimental investigation of a Stirling-cycle engine. Durham University. M. Sc. Thesis.

Siegel, R. and Perlmutter, M. (1961). Two-dimensional pulsating laminar flow in a duct with a constant wall temperature. Int. Heat-trans. Conf. (A.S. M.E.) Boulder, Colorado, U.S.A., pp. 517-35.

Ster, J. Van der (1960). The production of liquid nitrogen from atmospheric air using a gas refrigerating machine. Delft Technische Hochschule Thesis.

Stirling R. (1817). Improvements for diminishing the consumption of fuel and in particular, an engine capable of being applied to the moving of machinery on a principle entirely new. British Paten No. 4081.

Tipler W. (1947). A simple theory of the heat regenerator. Tech. Report No. ICT/14, Shell Petroleum Co. Ltd.

Tipler, W. (1948). An electrical analogue to the heat regenerator. Proc-Int. Cong, of Appl. Mech. Vol 3, pp. 196-210.

Trayser, D. A. and Eibling J. A. (1966). A 50-watt portable generator employing a soiar-powered Stirling engine. Proc. I.E.C.E.C. Conf. pp. 1008-16.

Van Nederveen H. B. (1966). The nuclear Stirling engine. Paper 35, Ind. App. of Isotopic power generators. Joint U. K. A. E. A. - E.N.E.A. Intl. Symp. A.E.R.E., Harwell (Sept.).

Van Weenan F. L. (1948). Construction of the Philips air engine. Philips Tech. Rev. 9. 125-34.

Vasishta, V. (1969). Heat-transfer and flo*-friction characteristics of compact matrix surfaces for Stirling-cycle regenerators. M.Sc. Thesis, University of Calgary.

Wadsworth J. (1961). An experimental investigation of the local packing and heat-transfer processes in packed beds of homogeneous spheres. Int. Heat-Trans. Conf. (A.S.M.E.), Boulder, Colorado, U.S.A. pp. 760-9.

Walker, G. (1961a). The operational cycle of the Stirling engine with particular reference to the function of the regenerator. J. Mech. Engng Sci. 3, No. 4.

Walker G. (1961b). Some aspects of the design of reversed Stirling-cycle machines. Ph. D. Thesis, University of Durham.

Walker G. (1962). An optimization of the principal design parameters of Stirling-cycle machines. J. Mech. Engng Sci. 4, No. 3.

Walker, G. (1963a). Regeneration in Stirling engines. Engineer, Lond. 216, No. 5631.

Walker, G. (1963b). Density and frequency effects on the pressure drop across the regenerator of a Stirling-cycle machine. Engineer, Lond. 216, 1063.

Walker, G. (1963c). Machining internal fins in components for heat-exchangers. Machinery, Lond. 101, No. 2590.

Walker G. and Khan, M. (1965a). The theoretical performance of Stirling-cycle machines. S.A.E. Paper 949A (Annual winter meeting, Detroit, U.S.A.).

Walker, G. (1965b). Some aspects of the design of reversed Stirling-cycle machines. A.S.H.R.A.E., Paper No. 231 (Annual summer meeting, Portland, U.S.A.).

Walker, G. (1965c). Regenerative thermal machines - a status survey. Proc. Am. Power Conf. Vol. XXVII. Chicago, p. 530.

Walker, G. (1967) Stirling-cycle engines for total-energy systems. Inst. Gas Tech. Report, Chicago.

Walker, G. (1969). Dynamical aspects of the rhombic drive for small cooling engines Advances in Cryogenic Engineering, Vol. 14 (Ed. K. Timmenhaus). Plenum Press, New York.

Walker G. (1968). Military applications of Stirling-cycle machines. I.E.G.

E.G., Boulder, Colorado.

Walker, G. and Vasishta V. (1971). Heat-transfer and friction characteristics of dense-mesh wire-screen Stirling-cycle regenerators. Advances in Cryogenic Engineering, Vol. 16 (Ed. K- Timmerhaus). Plenum Press, New York.

Walker, G. and Wan W. K. (1972a). Heat-transfer and fluid-friction characteristics of dense-mesh wire screen at cryogenic temperatures. Proc. 4th Int. Cryogenic Engineering Conference, Eindhoven, Netherlands (May).

Walker G. (1972b). Stirling engines for isotope power systems. Proc And Intl. Gonf. on Power from Radioisotopes, Madrid (June).

Walker, G. (1972c.) Stirling engines - the second coming. Chart. Mech. Engr. 19, No. 4, 54-7.

Wan, W. K. (1971). The heat-transfer and friction-flow characteristics of densemesh wire-screen regenerator matrices. M.Sc. Thesis, University of Calgary.

West, F. B. and Taylor, A. T. (1952). The effect of pulsations on heat trans-ferturbulent flow of water inside tubes. Chem. Engng Prog. 48, No. 1,39-43.

Williamson, J. M. (1959). The effectiveness of the periodic-flow heat-exchanger. English Electric Report, No. W/M(4B).

Yagi, S., Kunii D., and Wakao, N. (1961). Radially effective thermal conductivities in packed beds Int. Heat-Trans. Conf. (A.S.M.E.) Boulder, Colorado, U.S.A., pp 742-9.

Yendall E. F. (1958). A novel refrigerating machine. Advances in cryogenic engineering, Vol. 2. Plenum Press, New York. pp. 188-96.

Zeuner, G. (1887). Technische thermodynamik. Vol. 1. Leipzig, pp. 347-57.

список рекомендуемой литературы

1. Кириллин В. А. Энергетика - проблемы и перспективы. - Коммунист, 1975, № 1, с. 43-51.

2. Стырикович М. А. Взаимодействие топливно-энергетического комплекса с окружающей средой. Доклад на общем собрании Академии наук CCCPt27 ноября 1974 г. - Вест. АН СССР, 1975, № 2, с. 13-23.

3. Лазарев П. П. Энергия, ее источники на Земле и ее происхождение. М.: Изд. Академии наук СССР, 1959.

4. Виноградов А. П. Взгляд в будущее. - Химия и жизнь, 1977, № 8, с. 10-13.

5. Двигатели Стирлинга. Пер. с англ. Под ред. В. М. Бродянского. М.: Мир, 1975.

I! 6. Мышииский Э. Л., Рыжков-Дудоноа М. А. Судовые поршневые двигатели внешнего сгорания. Л.: Судостроение, 1976.

7. Двигатели Стирлинга/Под ред. М. Г. Круглова. - Авт.: Даниличев В. Н., Ефимов С. И., Звонов В. А., Круглое М. Г., Шувалов А. Г. М.: Машиностроение, 1977.

8. Развитие криогенной гелиевой техники за рубежом. Обзорная информация. Криогенное и кислородное машиностроение- Серия ХМ-6. Авт.: Пронько В. Г., Краковский Б. Д., Гузман И. С., КострицкнйВ. Я-, Попова Т. И. М.: ЦИНТИХИМНЕФТЕМАШ, 1976.


Автоматические метеостанции 108 Автомобильный двигатель II, 88-

97, 102, 105 Автономная работа 53, 112, 135 Адиабатный процесс 40, 43 Азот 93, 97, 98 Азота закись 93

- окись 93 Аккумулятор тепловой 113

- электрический 87, 116 Амплитуда давления 70

Анализ термодинамический 29-43 Анзелнус 72 Атмосфера 42, 93

Атомная энергетическая установка

Бак 117

Безразмерный параметр мощности

32, 33, 45-52 --холодопроизводительности 33,

39. 45-52 Бейли 80

Бил 114, 117, 121, 134 Бронза 85 Брэдли 115, 118

Буферная полость 90, 92, 121, 124, 126, 127

Вал коленчатый 134 Ван 77 Ванкель 62 Васишта 77 Вибрация 112

Внутренняя энергия 30, 31, 97 Водород 53, 54 Военно-морские суда 112, ИЗ Военно-транспортные машины 112 Вытеснитель 19, 56, 90 - регенеративный 56, 57 Выхлопные газы 93 Вюлемьер 130 Вязкость 86

Габариты 49, 95

Газовая постоянная 33, 34-39, 44,

- турбина 28, 78, 93, 120 Гелий 53. 54 Генератор давления 23 Гидравлическое сопротивление 27,

53. 71, 85-87

Давление 14-54

- атмосферное 53, 54

- воздуха 53, 54, 98. 114

- максимальное 14-54

- мгновенное 32-54

- минимальное 32

- рабочего тела 32-54, 63

- среднее 32, 35. 38. 128. 129 Давления диапазон изменения 91,

Даниэльс 100

Двигатель внешнего сгорания 55-67

- внутреннего сгорания 13, 95-126

- гибридный 125-129

- свободно-поршневой 121 - 125

- Стирлинга 9. 55-65

- Эриксона 9. 65-67 Движение возвратно-поступательное

18, 29. 88

- гармоническое 31

- непрерывное 31

- прерывистое 18, 24 Де-Брей 87 Джекоб li

Джиффорд-Мак-Магон 12, 67 Джоуль-Томсон 100 Диаграммы р, V 15. 16. 18-27

- Т, s 15. 16, 18-27 Диаметр проволоки 84-86

- цилиндра 10, 95 Динамический эквивалент 127 Допущения 32. 78

Дрос 100 Дю-Пре 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [ 24 ] 25

ООО «Мягкий Дом» - это Отечественный производитель мебели. Наша профильная продукция - это диваны еврокнижка. Каждый диван можем изготовить в соответствии с Вашими пожеланияи (размер, ткань и материал). Осуществляем бесплатную доставку и сборку.

Звоните! Ежедневно!
Продажа и изготовление мебели.

Копирование контента сайта запрещено.
Авторские права защищаются адвокатской коллегией г. Москвы